National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Model research on the effectiveness of separation technologies for water treatment
Hofmanová, Lucie ; Látal,, Milan (referee) ; Kučera, Tomáš (advisor)
This diploma thesis deals with the effectiveness of separation technologies for water treatment. The first theoretical part mentions types of pollution that can be found in surface water. Furthermore, the interparticle interactions affecting the stability of colloidal dispersions are discussed. The following is a description of the principle, procedure, mechanisms of coagulation and factors influencing this process. The chapter dealing with types of water treatment is followed by a more detailed description of the individual separation technologies used in the water treatment plants. The important passage in the theoretical part is the description of materials and reagents used in laboratory experiments. The coagulants nanoiron and sodium water glass are characterized, as well as Bayoxide E33, CFH 0818, FILTRASORB 100 activated charcoal and DORSILIT silicate sand. The experimental part of the thesis analyses the jar test procedure. The flocculation tester intended for the jar test was used for laboratory coagulation using nanoiron and sodium water glass. The effectiveness of selected coagulants in the removal of turbidity from water during sedimentation of flakes produced in reaction vessels was investigated. In addition, the effectiveness of individual filtering materials in the removal of turbidity from water containing nanoiron/sodium water glass was investigated. In the end, the results of laboratory tests are compared and evaluated, including photos taken during experiments.
Model research on the effectiveness of separation technologies for water treatment
Hofmanová, Lucie ; Látal,, Milan (referee) ; Kučera, Tomáš (advisor)
This diploma thesis deals with the effectiveness of separation technologies for water treatment. The first theoretical part mentions types of pollution that can be found in surface water. Furthermore, the interparticle interactions affecting the stability of colloidal dispersions are discussed. The following is a description of the principle, procedure, mechanisms of coagulation and factors influencing this process. The chapter dealing with types of water treatment is followed by a more detailed description of the individual separation technologies used in the water treatment plants. The important passage in the theoretical part is the description of materials and reagents used in laboratory experiments. The coagulants nanoiron and sodium water glass are characterized, as well as Bayoxide E33, CFH 0818, FILTRASORB 100 activated charcoal and DORSILIT silicate sand. The experimental part of the thesis analyses the jar test procedure. The flocculation tester intended for the jar test was used for laboratory coagulation using nanoiron and sodium water glass. The effectiveness of selected coagulants in the removal of turbidity from water during sedimentation of flakes produced in reaction vessels was investigated. In addition, the effectiveness of individual filtering materials in the removal of turbidity from water containing nanoiron/sodium water glass was investigated. In the end, the results of laboratory tests are compared and evaluated, including photos taken during experiments.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.